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Estimating probabilities from experimental frequencies
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Estimating the probability distributionq governing the behavior of a certain variable by sampling its value
a finite number of times most typically involves an error. Successive measurements allow the construction of
a histogram, or frequency countf, of each of the possible outcomes. In this work, the probability that the true
distribution beq, given that the frequency countf was sampled, is studied. Such a probability may be written
as a Gibbs distribution. A thermodynamic potential, which allows an easy evaluation of the mean Kullback-
Leibler divergence between the true and measured distribution, is defined. For a large number of samples, the
expectation value of any function ofq is expanded in powers of the inverse number of samples. As an example,
the moments, the entropy, and the mutual information are analyzed.
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I. ESTIMATING PROBABILITIES FROM EXPERIMENTAL
FREQUENCIES

The estimation of probability distributions from a limite
number of samples typically involves an error. Consider,
example, a random variable that can be either 0 or 1, b
values with probability 1/2. An experimenter measures
variable, say, four times. Ifn0 ~or n1) is the number of trials
the result was 0~or 1!, the possible outcomes aren05 j ,n1

542 j , where j may vary between 0 and 4. Each of tho
possibilities has a probability 3/2j !(42 j )! of occurring. If
the experimenter estimates the underlying probability fr
the frequencies, his or her claim will be that the probabil
of getting a zero isn0 /4. However, in view thatn0 depends
on the particular outcome of the four trials, only a fracti
3/16 of the times will this procedure give the correct resu
that is f 05q051/2.

In the above example, there are three probability distri
tions involved. First, there is thetrue underlying probability
q, actually governing the outcome of the experiment. In v
tor notationq5(q0 ,q1), and in the particular instance abov
q5(1/2,1/2). Then, there is the frequency countf5( f 0 , f 1),
where f i is obtained by dividingni by the total number of
measurementsN ~four in the example!. And finally, there is
the probability thatf5q. To define this last probability, on
has to consider all possible samples ofN trials and evaluate
how often the conditionf5q is fulfilled.

More generally, one can define the probability of meas
ing a particularf, while the underlyingq remains fixed. This
means to consider a probability distribution of all the po
sible frequency counts. The independent variable is the v
tor f, which varies in a discrete set, and the dependent v
able isp(fuq).

The frequency countf is an estimation of the underlyin
q. In many applications, however, one is interested not q
in q, but rather in some function ofq. Treves and Panzeri@1#,
for example, have quantified the mean error that an exp
menter makes when evaluating the mutual information in
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frequency countf, as an approximation to that in the tru
~and unknown! q. Their analysis was made in the same sp
as above, that is, they have consideredq fixed, while the
value off depended on the particular outcome ofN measure-
ments. They have obtained a clean analytical result unde
independence approximation. Their approach may be n
rally generalized to situations whereq is a probability den-
sity, that is, varies in a continuous set@2#.

However, what the experimenter knows is not the trueq,
but one particularf, obtained afterN observations. His or he
aim is to estimate the most probable value ofq ~or of some
function of q) from the knowledge off. More generally, the
experimenter may be interested in the whole distribut
P(quf), that is, the probability that the true distribution beq,
given that he or she has measuredf. This means to settle the
problem the other way round as was studied by Treves
Panzeri and in the example above. It actually correspo
to Wolpert and Wolf’s approach@3# in the estimation of
entropies.

In the following section, the properties of the distributio
P(quf) are studied. In Sec. III,P(quf) is written as a Gibbs’
distribution, where the inverse number of samples plays
role of an effective temperature, and the Kullback-Leib
divergence betweenf andq is the equivalent of the energy o
stateq. As a consequence, a thermodynamic potential is
fined, thus allowing the calculation of the mean Kullbac
Leibler divergence betweenf and q by simple derivation.
This inspires the expansion made in Sec. IV, where the
pectation value of an arbitrary function ofq can be written as
a power series in the inverse number of samples. The cas
the entropy, the mutual information, or any moment of t
distribution q is shown in the examples of Sec. V. Next,
Sec. VI the analytical results are confronted with numeri
simulations. Finally, in Sec. VII, the main results are su
marized and discussed.

II. THE PROBABILITY DISTRIBUTION FOR THE TRUE
PROBABILITY DISTRIBUTION

Consider the random variableX taking values from the se
x5(x1 , . . . ,xS) with probabilitiesq5(q1 , . . . ,qS). In prin-
ciple, there is no need thatx1 , . . . ,xS be numerical values, it
©2002 The American Physical Society24-1
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INÉS SAMENGO PHYSICAL REVIEW E 65 046124
suffices them to be any exclusive and exhaustive set of
egories.

An experimenter makesN observations of the value ofX
and builds a histogramn5(n1 , . . . ,nS), where ni is the
number of times the outcome wasxi . The experimenter con
siders the frequenciesf5( f 1 , . . . ,f S)5(n1 /N, . . . ,nS /N)
as an estimation of the true underlying probability distrib
tion q. If the measurements are taken independently,
probability of measuringf given that the data are sorted a
cording toq is equal to the probability of observing eachxi
a numberni of times, that is,

p~ fuq!5N!P i

qi
ni

ni !
5

N!

P i~N fi !!
expS N(

i
f i ln qi D . ~1!

However, the knowledge the experimenter has at handf,
not q. He or she may, therefore, wonder what is the pro
ability that the true distribution beq, given that the outcome
of the experiment wasf. This means to evaluate a probabili
densityP(quf), whose independent variableq runs over all
the possible distributions of the data. That is, all vectors
RS such that

(
i

qi51,

0<qi<1; i . ~2!

The set of allq obeying Eqs.~2! constitutes the domainD
where P(quf) is defined. It is a finite portion of an
(S21)-dimensional plane embedded inRS, and is normal to
the vector (1,1, . . . ,1).

Notice that since eachf i is the ratio of two natural num
bers, the set of possible frequenciesf is discrete. The domain
D, on the contrary, contains a continuum of distributionsq.
Consequently,p(fuq) is a probability, whereasP(quf) is a
density.

Bayes’s rule states that

P~quf!5
p~ fuq!P~q!

p~ f!
, ~3!

whereP(q) is the prior probability distribution forq, and

p~ f!5E
D

P~ fuq!P~q!dSq . ~4!

Here,dSq is a volume element inD.
The prior P(q) contains all additional pieces of know

edge aboutq, apart from the experimental data. Here, t
assumption is made that there is noa priori knowledge.
However, it turns out to be crucial to specifywhat is it that is
not known@5#. A prior that is uniform overD, as was used
by Wolpert and Wolf@3#, is certainly not uniform over any
nonlinear function ofq; for example, the log likelihood
Thus, not knowing anything aboutq implies knowing some-
thing about lnq, which in turn may result in awkward scalin
properties. In this work, the power prior
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Pb~q!5
P i 51

S qi
b21

Zb
~5!

is repeatedly used, withZb5AS@G(b)#S/G(Sb) ~notice that
when b→0,Zb→AS). However, as was shown in Ref.@5#
choosing any of these priors results in a surprisingly pea
a priori distribution of the possible entropies. Hence, t
choice of the prior is a delicate issue and, in any particu
application, it should be done carefully. Here, no attempt w
be made to instruct on the way such a choice should
made, but since the results that follow are strongly groun
on the Bayesian inference, their validity is, at most, as go
as the prior@3#.

Replacing Eqs.~1! and ~4! in Eq. ~3!,

P~quf!5
exp@2ND~ f,q!#P~q!

Z , ~6!

whereD is the Kullback-Leibler divergence betweenf andq,

D~ f,q!5(
i

f i lnS f i

qi
D , ~7!

and it quantifies the mean information for discriminating
favor of f againstq, given the data@4#. The functionZ reads

Z5E
D

dSqP~q!exp@2ND~ f,q!#. ~8!

In the remainder of the section, the properties ofP(quf)
are studied for the particularPb(q) defined in Eq.~5!. In
doing so, the integral

E
D

P i 51
S qi

midSq5AS
P iG~mi11!

GS S1(
i

mi D ~9!

is frequently encountered. Equation~9! was first derived in
@3#, and an alternative proof may be found in the Append

For the priors in Eq.~5!, the functionZ, Eq. ~8!, may be
calculated analytically and it reads

Z5exp@NH~ f!#AS
P j 51

S G~N fk1b!

G~N1Sb!
, ~10!

whereH is the entropy of a distribution

H~ f!52(
i 51

S

f i ln f i . ~11!

Thus, replacing Eq.~10! in Eq. ~6!

P~quf!5
G~N1Sb!

AS
P i

qi
N fi1b21

G~N fi1b!
. ~12!

The most probableqM5(q1
M , . . . ,qS

M) is obtained by
maximizing Eq.~12! under the normalization constraint. Th
result is
4-2
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ESTIMATING PROBABILITIES FROM EXPERIMENTAL . . . PHYSICAL REVIEW E 65 046124
qi
M5

N fi1b21

N1S~b21!
. ~13!

Thus, if P(q) is uniform inD(b51), then the most probabl
q is f. With the maximum likelihood prior (b→0), the most
probable q is shifted from f towards lower counts. The
Krichevsky-Trofimov estimator @8# (b51/2) and the
Shurmann-Grassber@9# b51/S lie in between.

Using Eq.~9! the expectation value of each componentqi
may be calculated,

^qi&5
N fi1b

N1Sb
. ~14!

For the uniform prior b51, this equation reduces t
Laplace’s estimator of probabilities. In Fig. 1 the differen
between̂ qi& and the frequency countf i is shown forb51.
It is seen that whenf i is smaller than 1/S,^qi& is larger than
f i . On the other hand, iff i.1/S then^qi&, f i . That is, the
mean value ofqi is displaced from the frequency count so
to approach the flat distribution 1/S. Of course, the larger the
number of samplesN, the smaller the effect. Changing th
value ofb is equivalent to rescaling the vertical axis of Fi
1.

Typically, one wants to make a guess about the trueq.
Here, two possible estimators have been calculated:
maximumqM and the mean̂q&. By using the maximum, one
is choosing the value that is most probably correct. But
course, eventually one will also make an error. If one m
sures the error as (qM2q)2, and averages it withP(quf), its
mean turns out to be larger than if one had chosen^q& @3#.
Hence, althoughqM is the estimator that gives the corre
answer most frequently, if one cares for the typical size
the errors,̂ q& is a better choice.

When usinĝ q& as an estimator, the covariance matrixS i j
may be of interest. By means of Eq.~9! it is easy to show
that for iÞ j ,

FIG. 1. Difference between̂qi& and f i as a function off i . The
value of b has been set to 1. The three lines correspond toN
53, 6, and 30. Here,X may take three values (S53). When f i

,1/3, the expectation value ofqi is larger than the measured fre
quencyf i . As N increases, the effect becomes less important.
04612
he

f
-

f

S i j 5Š~qi2^qi&!~qj2^qj&!‹

52
~N fi1b!~N f j1b!

~N1Sb!2~N1Sb11!
→2

f i f j

N
when N@S,

~15!

whereas fori 5 j ,

S i i 5Š~qi2^qi&!2
‹5

~N fi1b!@N~12 f i !1b~S21!#

~N1Sb!2~N1Sb11!

→ f i~12 f i !

N
when N@S. ~16!

The negative sign in Eq.~15! derives from the normalization
condition: since the sum of allqi is fixed to unity, if one of
them surpasses its mean, it is to be expected that some
component will be below. In contrast, Eq.~16! shows thatS i i
is always positive.

The expectation value ofq, Eq. ~14!, together with the
covariance matrix equations~15! and ~16! are useful for the
Gaussian approximation toP(quf), centered in its mean:

P~quf!5KexpF2
1

2
~q2^q&! tS̃21~q2^q&!G , ~17!

where the superscriptt means transposed andK is a normal-
ization constant. Equation~17! is only defined in the plane
containingD, normal to the vector (1,1, . . . ,1). Actually, S
does not have an inverse in the entire spaceRS, since the
direction (1,1, . . . ,1) is one of itseigenvectors with eigen
value equal to zero. However,S being a symmetric matrix, it
can be diagonalized by an orthogonal basis. Hence, thS
21 remaining eigenvectors lie in the plane containingD.
The restriction ofS into that subspace isS̃, and its inverse is
the matrix appearing in the exponent of Eq.~17!.

In order to normalize the approximation~17! an integral
of a Gaussian function inD is needed. This is certainly no
an easy task. If, however, one can assume that the distr
tion is sufficiently peaked so thatP(quf)'0 for q in the
border ofD, then the domainD can be extended to the whol
plane normal to (1,1, . . . ,1). In that case,K215A2pP jl j ,
wherel j are theS21 eigenvalues ofS̃. While the calcula-
tion of all thel j is a difficult problem, it is quite straightfor-
ward to show that whenN@S, all thel j are proportional to
1/N. Therefore, the square root of each eigenvalue is a us
measure of the width ofP(quf) in the direction of its eigen-
vector.

However, the Gaussian approximation~17! is not useful
for other purposes, as for instance, calculating mean val
since it lacks from analytical expressions such as Eq.~9!. As
a consequence, in what follows, the full Eq.~12! is used.

Equation ~9! allows the evaluation of all moments o
P(qi uf),

^qi
k&5

G~N fi1k1b!G~N1Sb!

G~N fi1b!G~N1Sb1k!
. ~18!
4-3



a
le

-

o
n
a
it,

-

on
in
n
n

o

xi-

f
the

not

ot

nc-

l-
l
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Since the moments are the coefficients of the Taylor exp
sion of the Fourier transform of a distribution, the sing
component distribution reads

P~qi uf!5P~qi u f i !5
qN fi1b21~12q!N(12 f i )1b(S21)21

B@N fi1b,N~12 f i !1b~S21!#
,

~19!

where B(x,y)5G(x)G(y)/G(x1y). Figure 2 displays the
distribution P(qi u f i) for three different values ofN and b
51. In all cases, whenN is large, the distribution is sym
metrical, and reaches its maximum value ofqi5 f i51/3. In
fact, it may be shown analytically that whenN@1,

lim
N@1

P~qi u f i !5
1

A2ps2
exp@2~qi2 f i !

2/2s2#, ~20!

wheres5@ f i(12 f i)/N#1/2. That is, the distribution tends t
a Gaussian function centered at the experimental freque
and with a mean dispersion that diminishes with the squ
root of the number of samples. Notice that in this lim
P(quf) does not depend onb.

It may be seen in Fig. 2 that for smaller values ofN, the
distribution is no longer symmetrical. In fact, sinceS52 and
f 151/3,1/S, the tail in P(q1u f 1) extends to the right, re
sulting in a positivê qi&2 f i , as predicted by Eq.~18!.

III. THE INVERSE NUMBER OF SAMPLES AS AN
EFFECTIVE TEMPERATURE

Equation~6! states thatP(quf) is completely analogous to
a Gibbs distribution, where the number of samplesN plays
the role of the inverse of the temperature,D(f,q) is the
equivalent to the energy of the stateq, andP(q) is the den-
sity of states. This analogy was first pointed out in the c
text of machine learning@6#, and since then, several times
learning theory~see, for example,@7#!. In these cases, whe
fluctuations were neglected, the probability distribution u
der study had the form of Eq.~6!. In the present context, n
approximations are needed to write down Eq.~6!.

FIG. 2. Probability distributionP(q1u f 1) for the case f 1

51/3, b51, andS52. Different curves correspond to several va
ues of the number of samplesN. The full line depicts the analytica
result Eq.~19!, while the dots are the numerical simulations~see
Sec. VI!.
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The exponential factor in Eq.~6! depends onq andf only
in the combinationD(f,q), diminishing exponentially as the
divergence between the two distributions grows. Its ma
mum is attained whenD50. It can be shown@4# that for any
f andq, D(f,q)>0, and the equality holds only whenf5q.

Defining the thermodynamic potential

F52 ln Z, ~21!

it follows that

^D&5
]F

]N
, ~22!

sD
2 5^D22^D&2&52

]2F

]N2
, ~23!

where the mean valueŝ (•)& are defined by *D
(•)P(quf)dSq .

For example, when the prior is given by Eq.~5!,

^D&5H~ f!2C~N1Sb!1(
i

f iC~N fi1b!, ~24!

whereC(x)5d ln G(x)/dx is the digamma function@10#. It is
easy to show that

lim
N@S

^D&5
S21

2N
1O~1/N2!. ~25!

Here, bothN and N fi have been supposed large for alli.
Since f i is of the order of 1/S, the above limit holds when
N@S. Equation ~25! states that for a large number o
samples, the expected value of the divergence between
experimental frequencies and the true distribution does
depend on the measuredf. It grows linearly with the number
of items and decreases as 1/N.

Accordingly,

sD
2 52C1~N1Sb!1(

i 51

S

f i
2C1~N fi1b!, ~26!

where C1(x)5dC(x)/dx is the first polygamma function
@10#. Taking the limit of a large number of samples,

lim
N@S

sD
2 5

S21

2N2
1O~1/N3!. ~27!

In the limit N@S, the mean quadratic dispersion does n
depend on the measuredf i .

IV. ESTIMATION OF FUNCTIONALS OF q, FOR A
LARGE NUMBER OF SAMPLES.

Many times, one is interested in the value of some fu
tion W(q). For instance, ifX takes numerical values,W may
be the meanX̄5( ixiqi . Or, in some other application,W
may be the entropy of the distributionq @see Eq.~11!#. If the
4-4
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set X is the Cartesian product of two other setsX5Z13Z2

such that;xiPX:xi5(za
1 ,zb

2), where za
1PZ1 and zb

2PZ2,
thenW may be the mutual informationI betweenZ1 andZ2,

I 5(
ab

qablnF qab

qa.q.b
G , ~28!

where

qa.5(
b

qab ,

q.b5(
a

qab . ~29!

Sinceq is unknown, an interesting guess forW(q) is its
Bayesian estimation

^W&5E
D

W~q!P~quf!, ~30!

which has the appealing property of minimizing the me
square error@3#. The zero-order guess for^W& is W(f). In
what follows, a systematic method to improve this value
derived.

In the preceding section the expectation value of the
vergence between the true and the measured distribution
calculated, as well as the size of the fluctuations, for
priors in Eq.~5!. As the number of samples increases, b
the expected divergence and the fluctuations diminish asN.
Since a small divergence means that the two distributions
necessarily very similar, only theq that are very nearf have
a nonvanishing probability—forD sufficiently small, this ar-
gument holds for any definition of similarity.

As a consequence, it is reasonable to expandW(q) in its
Taylor series in the neighborhood off. Hence, Eq.~30! reads

^W&5K (
k50

`
1

k! S (i 51

S

~qi2 f i !
]

]qi
D k

Wu fL . ~31!

SinceP(quf) decreases dramatically asq departs fromf, the
higher-order terms~largek) in Eq. ~31! should become neg
ligible, at least, for largeN.

In the first place, the mean values of Eq.~31! are evalu-
ated for the special case of the power law priors. This
volves, basically, the computation of integrals inD of
P i 51

S (qi2 f i)
ki for a set of non-negative indice

(ki ,k2 , . . .kS) that sum up toK. This can be done using Eq
~9!. Of course, the termk50—that is, the raw guess—doe
not depend onN. It may be shown that onlyk51 and k
52 are proportional to 1/N. Specifically,

^qi2 f i&5
b~12S fi !

N1Sb
→b~12S fi !

N
when N@S. ~32!

In the same way ifiÞ j ,
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^~qi2 f i !~qj2 f j !&

52
N fi f j2b@b1~11Sb!~S fi f j2 f i2 f j !#

~N1Sb!~N1Sb11!

→2
f i f j

N
when N@S, ~33!

whereas wheni 5 j ,

^~qi2 f i !
2&5

N fi~12 f i !1b@11b1 f i~11Sb!~S fi22!#

~N1Sb!~N1Sb11!

→ f i~12 f i !

N
when N@S. ~34!

Summarizing, to first order in 1/N,

^W&'W~ f!1(
i 51

S
]W

]qi
U

f

b~12S fi !

N
1

1

2 (
i 51

S
]2W

]qi
2 U

f

f i~12 f i !

N

2(
i 51

S

(
j , i

]2W

]qi]qj
U

f

f i f j

N
. ~35!

This general formula allows the calculation of the first co
rection of the expectation value of an arbitrary functi
W(q), whenever the prior is given by Eq.~5!.

Now, consider the more general case of an arbitrary pr
If P(q) is not given by Eq.~5!, then one can still proceed a
above, but by replacingW(q) by the productW(q)P(q), and
settingb51.

V. EXAMPLES

Here, the expansion~35! is applied to a few particular
cases. Wolpert and Wolf@3# have already calculated the firs
two examples exactly~Secs. V A and V B! in the particular
case ofb51. Their results, once expanded up to first ord
in 1/N are now compared to Eq.~35! for verification. The
advantage of Eq.~35! is that, in contrast to Wolpert and
Wolf’s approach, it applies to any functionW. The counter-
part, of course, is that it gives no more than the first corr
tion to ^W&. Section V C deals with the calculation o
moments.

A. The mean value of the entropy

First, the functionW(q) is taken to be the entropyH of
the distributionq, defined in Eq.~11!, for q5f. It is easy to
verify that ]H/]qi52(11 ln qi), whereas]2H/]qi]qj5
2d i j /qi , whered i j is Kroeneker delta function:d i j 51 if i
5 j and d i j 50 if iÞ j . Replacing in Eq.~35! and keeping
only up to the first order in 1/N one arrives at

^H&5S 12
bS

N DH~ f!1
b

N (
i 51

S

lnS 1

f i
D2

S21

2N
1O~1/N2!.

~36!
4-5
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INÉS SAMENGO PHYSICAL REVIEW E 65 046124
For the case ofb51, this same expression is obtained
expanding the exact result obtained in Ref.@3#,

^H& [3]52(
i 51

S
N fi11

N1S
@F (1)~N fi12!2F (1)~N1S11!#,

~37!

whereF (1)(x)5d ln G(x)/dx is the digamma function@10#.

B. The mean value of the mutual information

Now W is taken to be the mutual information between tw
sets, as defined by Eq.~28!. Replacing in Eq.~35!,

^I &5I ~ f!S 12b
S1S2

N D1
S1S2112S12S2

2N

1
b

N (
ab

lnS f ab

f a. f .b
D , ~38!

whereS1 andS2 are the number of elements in the setsZ1

andZ2. Whenb51, Eq. ~38! coincides with the expansio
up to first order in 1/N of the exact result derived in@3#,

^I & [3]5(
ab

N fab11

N1S1S2
@F (1)~N fab12!2F (1)~N1S1S211!#

2(
a

N fa.1S2

N1S1S2
@F (1)~N fa.1S211!2F (1)~N

1S1S211!#2(
b

N f .b1S1

N1S1S2
@F (1)~N f .b1S111!

2F (1)~N1S1S211!#. ~39!

The quantitiesf a. and f .b in Eqs.~38! and~39! are defined as
in Eq. ~29!.

In contrast to the result obtained in@1#, the first-order
correction to the mutual information does bear a depende
on the values of the individual probabilitiesf ab . There is no
conflict, however, between the two results, since the m
value in Eq.~38! involves the distributionP(quf). The ap-
proach in@1#, instead, usesp(fuq), while the trueq is fixed.
In the present approach, the mean value^I & can be either
higher or lower thanI (f).

C. The mean value of functions ofX

Consider a functiong:$x1 , . . . ,xS%→R that maps the
possible values ofX into real numbers. For example, ifX
takes numerical values, thengk can be such thatgk(xi)
5xi

k . For each suchg, another functionG:D→R is defined,
namely,G(q)5( ig(xi)qi . In the example above,Gk is thek
moment of the distributionq. The expectation valuêG& is
easily calculated using Eq.~35! and reads

^G&5G~ f!S 12
bS

N D1
b

N (
i 51

S

g~xi !. ~40!
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In particular, for thegk considered above, this is the firs
order correction to all moments ofq.

VI. NUMERICAL SIMULATIONS

In this section, Eq.~35! is confronted with the result o
numerical simulations. Once again, and just to follow pre
ous studies,W(q) is set equal to the mutual information
However, in contrast to what was done up to now@1–3#, the
simulations are performed strictly within the present fram
work. That is, the measured frequencyf is kept fixed, and the
probability for the trueq is evaluated.

The procedure to measure numericallyP(quf) is now ex-
plained. As before,X takes values in a set ofS elements.
Hence,f andq areS-dimensional vectors. The value off is
fixed. The domainD is discretized into a numberJ of cells.
Each cell corresponds to a vectorq that will be visited by the
program. The larger the number of cellsJ, the better the
sampling of the domainD. For each one of these cells, th
value of X is measuredN times. The outcomes are sorte
with the distributionq of the actual cell. If the frequency
count thus obtained equalsf, the counter of the selected ce
is increased~there is a counter for each cell inD). The com-
parison between the frequency count and the~fixed! f is done
with precision e. The procedure is repeatedM times (M
large! in order to have enough counts. This algorithm allo
to construct a histogram for the probability that a givenq
PD generates the selectedf.

For simplicity, in the results below, the number of trialsM
is the same for all cells. This is equivalent to using a unifo
prior in D(b51). A simulation with a nonuniform prior can
be carried out by choosing a differentM for each cell.

The two parameters that determine the precision of
simulations areJ ande. If DJ is the Kullback-Leibler diver-
gence between two neighboringq cells, whenever 1/N
!DJ then the only vectorq that produces frequency coun
equal tof is q5f. That is, forN sufficiently large, the dis-
cretized system behaves as ifN5`. Notice that for largeJ,
two neighboring cells correspond toq andq1dq, with each
dqi}JS21. Thus, the Kullback-Leibzig distance between t
two is 'S/JS21. This means that whenN reachesJS21/S,
the simulation starts to behave as ifN were actually infinite.

On the other hand, ife is not small enough, one mistak
enly counts coincidences withf, just because the criterion
used in the comparison is too brute. In other words, a large
allows cellsq too far away fromf to give rise to frequency
counts equal tof. That is, the system behaves as ifN where
smaller than its actual value.

The dots in Fig. 2 show the result of the above proced
for a single componentq1. As observed, there is very goo
agreement with the full line, showing the analytical resu
Eq. ~12!.

To evaluate the expectation value of a certain functi
one simply needs to calculate the sum

^W&unumerical5 (
cells in D

W~q!P~quf!, ~41!
4-6
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using the P(quf) obtained with the algorithm explaine
above. Figure 3 depicts the result for the mutual informat
with b51. The dots represent the simulations, Eq.~41!,
whereas the full line shows the analytical result~38!. The
computational time required to evaluateP(quf) increases ex-
ponentially with the number of dimensionsS. Hence, in the
present comparison it is desirable to keepS as small as pos
sible. However, in order to define a mutual information, tw
setsZ1 andZ2 are needed withS1 andS2 elements each. In
Fig. 3, S152 andS252, thus making a three-dimension
domainD.

In ~a! the selectedf had no mutual information:I (f)50.
The graph shows that the expectation value ofI is positive.
With the chosen parameters~see the caption of the figure!,
the analytical result~38! coincides exactly with that derive
by Treves and Panzeri@1#, that is, ^I &5(S121)(S2
21)/2N. Since forI (f)50, Eq. ~38! reduces tô I &5S1S2
112S12S2 /2N for some particular choices ofSI andSJ ,
the two expressions may coincide. It should be kept in mi
however, that this is just a coincidence, and the two m
values have different meanings.

In contrast, in case~b! the value ofI (f) is large~see the
caption for details!. In this case, the simulations confirm th
phenomenon that was pointed out in the preceding sec
namely, that the expectation value^I & may be lower than the
measuredI (f).

FIG. 3. Difference between the expectation value of the mu
information ^I & and the measuredI (f) as a function of the inverse
number of samples 1/N. The b51 prior was considered. The ful
line represents the analytical result, Eq.~38!, and the dots the simu
lations. In~a!, f 115 f 125 f 215 f 2251/4 andI (f)50. For each cell in
D, 30 000 sets ofN samples have been sorted. In~b!, f 11

50.4, f 1250.1, f 2150.1, and f 2250.4, so I (f)50.192 745. For
each cell inD, 10 000 sets ofN samples have been sorted. In bo
cases, each axis inq space has been divided into 20 intervals,
order to discretizeD, while the parametere was set to 0.0125.
04612
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It may be seen that for largeN, all the dots concentrate in
^I &5I (f). This is, as pointed out before, due to the discre
zation ofD. If the number of cellsJ is increased, one need
to go to a largerN to find such a saturation. On the contrar
for smaller N, the simulated̂ I & lies below its theoretical
value. This is a manifestation of the finite nature ofe, and
the phenomenon becomes less evident ase is lowered.

VII. DISCUSSION

In this work, the probability densityP(quf) for the true
distribution q given the experimental frequenciesf is ana-
lyzed. Such a density, it is shown, may be written as a Gi
distribution, where the inverse number of samples plays
role of an effective temperature, and the Kullback-Leibz
divergence betweenf andq is the equivalent of the energy o
stateq. Its study is not only for academic purposes, but ev
tually also practical. In the ideal situation, it would be val
able to calculateP(quf) while an experiment is being carrie
out, in order to know when the number of samples is alrea
enough. The experimenter may thus decide to give an en
the sampling process when the width ofP(quf) reaches some
acceptable value. For example, someone interested in m
suring the public opinion prior to an election may wond
how many subjects need to be polled in order to hav
reliable estimation of the forthcoming result. Many time
however, experiments comes to an end because of other
tors ~a deadline or a floor in the the amount of money, p
tience, or students!. An estimation of the width ofP(quf) is
valuable even in these cases, just to provide error bars.

One possibility is to write down the fullP(quf). However,
being a function of many variables, this may not be ve
practical. A convenient parameter measuring the width
P(quf) in several directions is the square root of the cor
sponding eigenvalues ofS̃. These have been shown to d
minish asymptotically as 1/N. From the information-
theoretical point of view, a more appealing parameter is
mean divergenceD and its mean quadratic fluctuations. As
shown in Eq.~24!, for smallN, such a width depends on th
value of f. If N@S, however, botĥ D& andsD become in-
dependent off and decrease as 1/N @Eq. ~25!#. Yet another
route is to work with the functionW(q) one is interested in.
By means of Eq.~35!, it is possible to decide whether th
term proportional to 1/N is only a small correction toW(f)
or, on the contrary, the two terms are comparable. In
latter case, more measurements should be carried out.

Although some of the expressions presented here are v
for an arbitrary prior, much of the work deals with the pa
ticular case of Eq.~5!. The use of a prior that is essentially
linear combination of functions of the form~5! has been
proposed@5#, specifically, to be used in the inference of e
tropies. For this case, the partition function should be c
structed by applying the same linear superposition to
~10!, and the same holds for Eqs.~13!–~19!. The calculation
of ^D& andsD as derivatives ofF is still valid, whereas Eq.
~12! should also be averaged.

The analysis ofP(quf) carried out in Sec. II, and the
statistical mechanical description of Sec. III are valid ev
for small N. The fact that̂ D&→1/N for largeN inspires the

l
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expansion of̂ W& of Sec. IV. It should be clear, nevertheles
that such an expansion isonly convergent whenN@S. Ac-
tually, Eq.~12! is the first-order term in powers ofS/N, and
there is no reason to think that the higher-order terms will
negligible, if such a condition does not hold. Moreover, it
necessary to haveN fi@1 for all i. WhenN is large enough,
one can always define the number of categoriesS as to have
them all well populated. But forN'S this may well not be
the case. The consequences may, in fact, be quite dram
For instance, in the example of the entropy~Sec. V A! one
can explicitly see thatf i appears in the denominator of E
~36!. In other words, the result is meaningless if there
empty categories.

However, when the conditionN@S does hold, Eq.~12!
may serve to draw nontrivial conclusions. For instance, i
usually supposed that limited sampling, on average, flaws
data introducing false correlations. This work shows that t
is not necessarily the case: limited sampling may sometim
on average, lower the correlations. This is clear in the sim
lations of Sec. VI, where finite sampling results, on avera
in a downward bias of the mutual information.
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APPENDIX: INTEGRATING A POWER DISTRIBUTION
IN D

Here Eq.~9! is derived. An alternative and more gener
line of reasoning may be found in@3#.

The aim is to calculate

I m
S 5E

D
P i 51

S dqiqi
mi

5E
0

1

dq1q1
m1E

0

1

dq2q2
m2 . . . dqSqS

mSdFlSS 12(
j 51

S

qj D G ,

~A1!

wherelS is a constant ensuring that when allmi vanish,I 0
S is

the volume ofD. The superscript inI m
S indicates the dimen-

sion of the vectorsm andq.
If X can only take two values, thenS52. In this case@11#,

I m
2 5E

0

1

dq1q1
m1E

0

1

dq2q2
m2d@l2~12q12q2!#,

5
1

l2
E

0

1

dq1q1
m1~12q1!m25

1

l2

m1!m2!

~m11m211!!
.

~A2!
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Now, the hypothesis is made for arbitraryS,

I m
S 5

1

lS

P i 51
S mi !

S S211(
j 51

S

mj D !

. ~A3!

To prove it, one proceeds by complete induction. Equat
~A3! is assumed true for a givenm5(m1 , . . .mS) and the
aim is to prove it for (mi , . . . ,mS11). Hence

I (m1 , . . . ,mS11)
S11 5E

D
~P i 51

S11dqiqi
mi !

5
lS

lS11
I (m1 ,m2 , . . . ,mS21)

S21 E
0

12( i 51
S

dqSqS
mS

3S 12(
j 51

S D mS11

QS 12(
j 51

S D ~A4!

5
lS

lS11
I (m1 ,m2 , . . . ,mS21),mS1mS1111

S mS!mS11!

~mS1mS1111!!
~A5!

5
1

lS11

P i 51
S11mi !

F ~S11!211 (
j 51

S11

mj G !

, ~A6!

whereQ(x) is Heaviside step function:Q(x)51 if x>1 and
Q(x)50 if x,0. When passing from Eq.~A4! to Eq. ~A5!,
use was made of the result~A2!. Accordingly, Eq.~A6! de-
rives from the inductive hypothesis~A3!. Since Eq.~A6!
coincides with Eq.~A3! when S is replaced byS11, the
hypothesis~A3! is proved true.

Finally, to determinelS one evaluates

I 0
S5

1

lS~S21!!
. ~A7!

The volume ofD is AS/(S21)!, as can beverified, once
again, by complete induction. ThenlS51/AS.
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